Computational Aspects of Singularity Theory

On occasion of the opening of the Graduiertenkolleg ’Experimental and Algorithmic Algebra’

Anne Frühbis-Kräuger

Institut für Algebraische Geometrie
Leibniz Universität Hannover

Aachen, 1. October 2010
Some Curves with and without singularities

\[y^2 - x = 0 \]
\[y^2 - x^2 - x^3 = 0 \]
Some Curves with and without singularities

\[y^2 - x = 0 \]

\[y^2 - x^2 - x^3 = 0 \]

\[y^2 - x^3 = 0 \]

\[y^2 - x^5 = 0 \]
Some Surfaces with isolated and non-isolated singularities

\[V(x^2 + y^2 - z^5) \]

\[V(x^2 + y^2z - z^3) \]
Some Surfaces with isolated and non-isolated singularities

\[V(x^2 + y^2 - z^5) \]
\[V(x^2 + y^2 z - z^3) \]
\[V(x^2 + y^4 - z^4 - 3x^2y^2) \]
\[V(x^2 - y^4 + x^2z^4) \]
Where is $X = V(\langle f_1, \ldots, f_k \rangle) \subset \mathbb{A}^n_C$ singular?

Recall:

X singular at $a \in \mathbb{A}^n_C \iff$ dimension of tangent space at a

\iff exceeds dimension of X at a

\iff rank of jacobian

matrix of (f_1, \ldots, f_k)

$< n - \text{dimension of } X \text{ at } a$
Where is $X = V(\langle f_1, \ldots, f_k \rangle) \subset \mathbb{A}^n_C$ singular?

Recall:

X singular at $a \in \mathbb{A}^n_C \iff \text{dimension of tangent space at } a$

$\iff \text{exceeds dimension of } X \text{ at } a$

$\iff \text{rank of jacobian}$

$\text{matrix of } (f_1, \ldots, f_k)$

$< n - \text{dimension of } X \text{ at } a$

For our hypersurfaces:

X singular at $a \iff \text{grad}(f)(a) = 0$
Where is $X = V(\langle f_1, \ldots, f_k \rangle) \subset \mathbb{A}^n_C$ singular?

Recall:

X singular at $a \in \mathbb{A}^n_C$ \iff dimension of tangent space at a

\iff exceeds dimension of X at a

\iff rank of jacobian

matrix of (f_1, \ldots, f_k)

$< n - \text{dimension of } X \text{ at } a$

For our hypersurfaces:

X singular at $a \iff \text{grad}(f)(a) = 0$

In the pictures of the first slide:

- parabola non-singular, because $\frac{\partial f}{\partial x} = -1$
- cusp singular at $(0, 0)$, because

$$\frac{\partial f}{\partial x} = -3x^2, \quad \frac{\partial f}{\partial y} = 2y$$
Is $y^2 - x^3 = 0$ 'less singular' than $y^2 - x^5 = 0$?

$A_2 : y^2 - x^3 = 0$

$A_4 : y^2 - x^5 = 0$
Is \(y^2 - x^3 = 0 \) 'less singular' than \(y^2 - x^5 = 0 \)?

\[A_2 : \quad y^2 - x^3 = 0 \quad \quad A_4 : \quad y^2 - x^5 = 0 \]

First idea of comparison: Consider ideals
\[\langle f \rangle, \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle, \langle f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle \subset \mathbb{C}\{x, y\} \]
Is $y^2 - x^3 = 0$ 'less singular' than $y^2 - x^5 = 0$?

$A_2 : y^2 - x^3 = 0$

$A_4 : y^2 - x^5 = 0$

First idea of comparison: Consider ideals

$\langle f \rangle, \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle, \langle f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle \subset \mathbb{C}\{x, y\}$

or the quotients

$\mathbb{C}\{x, y\}/\langle f \rangle$ und $\mathbb{C}\{x, y\}/\langle f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle$
Is $y^2 - x^3 = 0$ 'less singular' than $y^2 - x^5 = 0$?

$A_2 : y^2 - x^3 = 0 \quad A_4 : y^2 - x^5 = 0$

First idea of comparison: Consider ideals

$$\langle f \rangle, \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle, \langle f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle \subset \mathbb{C}\{x, y\}$$

or the quotients

$$\mathbb{C}\{x, y\}/\langle f \rangle \text{ und } \mathbb{C}\{x, y\}/\langle f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle$$

Advantage: Use of tools of commutative algebra!
Some classical invariants of isolated singularities

Milnor-number of hypersurface $V(f)$:

$$\mu := \dim_{\mathbb{C}} \mathbb{C}\{x\}/\langle \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n} \rangle$$

tjeurina-Zahl:

$$\tau := \dim_{\mathbb{C}} \mathbb{C}\{x\}/\langle f, \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n} \rangle$$

gemetric interpretation:
Some classical invariants of isolated singularities

Milnor-number of hypersurface $V(f)$:

$$\mu := \dim_{\mathbb{C}} \mathbb{C}\{x\}/\langle \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n} \rangle$$

geometric interpretation:

Tjurina-Zahl:

$$\tau := \dim_{\mathbb{C}} \mathbb{C}\{x\}/\langle f, \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n} \rangle$$
Some classical invariants of isolated singularities

Milnor-number of hypersurface $V(f)$:

$$\mu := \dim_{\mathbb{C}} \mathbb{C}\{x\}/\langle \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n} \rangle$$

generic interpretation:

Tjurina-Zahl:

$$\tau := \dim_{\mathbb{C}} \mathbb{C}\{x\}/\langle f, \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n} \rangle$$
Computing Milnor and Tjurina number

Recall:
Computing $\dim_{\mathbb{C}} \mathbb{C}[x_1, \ldots, x_n]/I$ for a 0-dimensional ideal I:
- compute a Groebner basis $G = \{g_1, \ldots, g_s\}$ of I w.r.t. monomial ordering (in particular $L(G) = L(I)$)
- $\dim_{\mathbb{C}} \mathbb{C}[x_1, \ldots, x_n]/L(G) = \dim_{\mathbb{C}} \mathbb{C}[x_1, \ldots, x_n]/I$
Computing Milnor and Tjurina number

Recall:
Computing $\dim_{\mathbb{C}} \mathbb{C}[x_1, \ldots, x_n]/I$ for a 0-dimensional ideal I:

- compute a Groebner basis $G = \{g_1, \ldots, g_s\}$ of I w.r.t. monomial ordering
 (in particular $L(G) = L(I)$)
- $\dim_{\mathbb{C}} \mathbb{C}[x_1, \ldots, x_n]/L(G) = \dim_{\mathbb{C}} \mathbb{C}[x_1, \ldots, x_n]/I$

In local situation:

- same computation, but w.r.t. local monomial ordering $(1 > x_i)$
- problem: not a well-ordering, hence no termination of Buchberger normal form
- solution: Mora normal form
Beginning of classification

For the plane curves of the first slide:

Milnor number: \(\mu(f) := \dim \mathbb{C} \{ x, y \}/\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle \)

<table>
<thead>
<tr>
<th>curve</th>
<th>'A₀'</th>
<th>A₁</th>
<th>A₂</th>
<th>A₃: (y^2 - x^4 = 0)</th>
<th>A₄</th>
<th>D₄: (x^3 - y^3 = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Beginning of classification

For the plane curves of the first slide:

Milnor number: $\mu(f) := \dim_{\mathbb{C}} \mathbb{C}\{x, y\}/\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle$

<table>
<thead>
<tr>
<th>curve</th>
<th>'A₀'</th>
<th>A₁</th>
<th>A₂</th>
<th>A₃ (y^2 - x^4 = 0)</th>
<th>A₄</th>
<th>D₄ (x^3 - y^3 = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Multiplicity: order of f,

i.e. smallest degree of a monomial in f

<table>
<thead>
<tr>
<th>Kurve</th>
<th>'A₀'</th>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>A₄</th>
<th>D₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>mult</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Beginning of classification

For the plane curves of the first slide:

Milnor number: \(\mu(f) := \dim_{\mathbb{C}} \mathbb{C}\{x, y\}/\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle \)

<table>
<thead>
<tr>
<th>curve</th>
<th>’A_0’</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>D_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Multiplicity: order of \(f \),

i.e. smallest degree of a monomial in \(f \)

<table>
<thead>
<tr>
<th>Kurve</th>
<th>’A_0’</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>D_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>mult</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

many other invariants for plane curve or hypersurface singularities:

e.g. \(\delta \), monodromy, spectrum, . . .
Fibres of a Deformation of an A_4 Singularity

$y^2 - x^5 - t \cdot x^3$:

in blue: Fibre for $t = -1$ (A_2), $t = 0$ (A_4) and $t = 1$ (A_2)
Fibres of a Deformation of an A_4 Singularity

$y^2 - x^5 - t \cdot x^3$:

in blue: Fibre for $t = -1$ (A_2) , $t = 0$ (A_4) und $t = 1$ (A_2)

again the fibres:
Deformations: Algorithmic Tasks

- What types of singularities appear in a given family? (classification)
Deformations: Algorithmic Tasks

- What types of singularities appear in a given family? (classification)
- What singularities can appear in a family with given special fibre? (adjacencies)
- What singularities of the same topological type can appear for a given special fibre?
Deformations: Algorithmic Tasks

- What types of singularities appear in a given family? (classification)
- What singularities can appear in a family with given special fibre? (adjacencies)
- What singularities of the same topological type can appear for a given special fibre?
- How many parameters do we need for a family containing all possible types with given special fibre? (first order deformations)
- Are there relations among these parameters? (obstructions, versality)
Deformations: Algorithmic Tasks

- What types of singularities appear in a given family? (classification)
- What singularities can appear in a family with given special fibre? (adjacencies)
- What singularities of the same topological type can appear for a given special fibre?
- How many parameters do we need for a family containing all possible types with given special fibre? (first order deformations)
- Are there relations among these parameters? (obstructions, versality)
- Is it possible to construct moduli spaces for singularities with certain fixed invariants?
Some non-isolated Singularities

Singular locus can be of dimension 1 for surfaces!
Some non-isolated Singularities

Singular locus can be of dimension 1 for surfaces!
New Phenomena in higher dimension

Problems:
- singular locus does not need to be 0-dimensional
New Phenomena in higher dimension

Problems:
- singular locus does not need to be 0-dimensional
- most invariants and constructions discussed up to now are restricted to isolated singularities
New Phenomena in higher dimension

Problems:
- singular locus does not need to be 0-dimensional
- most invariants and constructions discussed up to now are restricted to isolated singularities
- singular locus may be singular
New Phenomena in higher dimension

Problems:
- singular locus does not need to be 0-dimensional
- most invariants and constructions discussed up to now are restricted to isolated singularities
- singular locus may be singular

Conclusion: we need other tools!
New Phenomena in higher dimension

Problems:
- singular locus does not need to be 0-dimensional
- most invariants and constructions discussed up to now are restricted to isolated singularities
- singular locus may be singular

Conclusion: we need other tools!

example: desingularization
Blowing up, simplest case

Idea: replace a point in $\mathbb{A}_\mathbb{C}^2$ by a projective line
Blowing up, simplest case

Idea: replace a point in \mathbb{A}^2_C by a projective line

Effect: more room for curves to become smooth
Blowing up, simplest case

Idea: replace a point in \(\mathbb{A}^2_{\mathbb{C}} \) by a projective line

Effect: more room for curves to become smooth
in pictures (only one chart):

\[
\begin{array}{c}
\text{Before} \\
\text{After}
\end{array}
\]
Computation of a blowing up

X affine variety (ideal $I_X \subset K[x_1, \ldots, x_n]$)
C smooth subvariety of X
(wlog $I_C = \langle f_1, \ldots, f_k \rangle$)
Computation of a blowing up

\(X \) affine variety (ideal \(I_X \subset K[x_1, \ldots, x_n] \))

\(C \) smooth subvariety of \(X \)

(wlog \(I_C = \langle f_1, \ldots, f_k \rangle \))

total transform \(X'_{total} \subset X \times \mathbb{P}^{k-1} \):
Computational Singularities

A. Frühbis-Krüger

Isolated Singularities
Introduction by pictures
Singular Points
Invarianten

Families of Singularities
Families
Non-Isolated Singularities
Examples and Problems

Main Tool for Desingularization: Blowing up

Resolution of Singularities

Computation of a blowing up

X affine variety (ideal $I_X \subset K[x_1, \ldots, x_n]$)
C smooth subvariety of X
(wlog $I_C = \langle f_1, \ldots, f_k \rangle$)

total transform $X'_\text{total} \subset X \times \mathbb{P}^{k-1}$:
can be computed as preimage of I_X under

$\Phi : K[x_1, \ldots, x_n, y_1, \ldots, y_k] \rightarrow K[x_1, \ldots, x_n, t]$

$x_i \mapsto x_i$

$y_j \mapsto t \cdot f_j$
Computational Singularities

A. Frühbis-Krüger

Isolated Singularities
Introduction by pictures
Singular Points Invarianten
Families of Singularities
Families
Non-Isolated Singularities
Examples and Problems
Main Tool for Desingularization: Blowing up
Resolution of Singularities

Computation of a blowing up

\(X \) affine variety (ideal \(I_X \subset K[x_1, \ldots, x_n] \))

\(C \) smooth subvariety of \(X \)

\((\text{wlog} \ I_C = \langle f_1, \ldots, f_k \rangle)\)

total transform \(X'_{total} \subset X \times \mathbb{P}^{k-1} \):
can be computed as preimage of \(I_X \) under

\[\Phi : K[x_1, \ldots, x_n, y_1, \ldots, y_k] \rightarrow K[x_1, \ldots, x_n, t] \]

\[x_i \mapsto x_i \]

\[y_j \mapsto t \cdot f_j \]

algorithmically: Gröbner basis computation in \(n + k + 1 \)
variables w.r.t. an elimination ordering for \(t \)
One Blowing up does not suffice

blowing up A_4 at the origin (just one chart):
One Blowing up does not suffice

blowing up A_4 at the origin (just one chart):

for Whitney’s umbrella a blowing up at the origin does not change the singularity (in one chart):
Idea of Resolution of Singularities

Theorem (Hironaka, 1964):
For every algebraic variety over a field of characteristic zero, a desingularization can be achieved by a finite sequence of suitable blow ups.
Idea of Resolution of Singularities

Theorem (Hironaka, 1964):
For every algebraic variety over a field of characteristic zero, a desingularization can be achieved by a finite sequence of suitable blow ups.

Applications:
- properties/invariants of singularities
- birational invariants of varieties
- algebraic statistics (model selection in presence of hidden variables)
Idea of Resolution of Singularities

Theorem (Hironaka, 1964):
For every algebraic variety over a field of characteristic zero, a desingularization can be achieved by a finite sequence of suitable blow ups.

Applications:
- properties/invariants of singularities
- birational invariants of varieties
- algebraic statistics (model selection in presence of hidden variables)

Key task: choice of suitable centers
Tools: standard bases, ideal quotients, saturation, more specialized algorithms
Simplest Formulation of Desingularization

Given: algebraic variety X (over \mathbb{C})
Simplest Formulation of Desingularization

Given: algebraic variety X (over \mathbb{C})

Find: desingularization of X, i.e.
Simplest Formulation of Desingularization

Given: algebraic variety X (over \mathbb{C})

Find: desingularization of X, i.e.

- variety \tilde{X}, non-singular
- proper birational morphism
 $$\pi : \tilde{X} \longrightarrow X$$
Simplest Formulation of Desingularization

Given: algebraic variety X (over \mathbb{C})

Find: desingularization of X, i.e.

- variety \tilde{X}, non-singular
- proper birational morphism $\pi: \tilde{X} \longrightarrow X$

such that $\text{Reg}(X) \cong \pi^{-1}(\text{Reg}(X))$
Desingularization as a Task of Computer algebra

1964 Hironaka’s non-constructive proof
ca. 1990 first algorithmic proof (Villamayor, Bierstone-Milman)
ca. 2001 first prototype-implementation (Bodnar-Schicho in Maple)
ca. 2004 first practically usable implementation (FK-Pfister in Singular)
Strategy for Choice of Center

always improve 'worst' locus
Strategy for Choice of Center

always improve ’worst’ locus

simplest situation: plane curve singularities
singular locus is a finite set of points
always improve ’worst’ locus

simplest situation: plane curve singularities
 singular locus is a finite set of points

surface singularities:
 components of singular locus
 may be (singular) curves

When do we need to blow up in points, when in curves?
Strategy for Choice of Center

always improve ’worst’ locus

simplest situation: plane curve singularities
 singular locus is a finite set of points

surface singularities:
 components of singular locus
 may be (singular) curves
 When do we need to blow up in points,
 when in curves?

How do we finde the ’worst’ locus?
'worst' locus is locus of maximal value of the controlling invariant
The controlling invariant

'worst' locus is locus of maximal value of the controlling invariant

Requirements for the controlling invariant:

(a) locus of maximal value is Zariski-closed (Zariski upper semicontinuity of the invariant)

(b) locus of maximal value is non-singular and has normal crossing with exceptional divisors
The controlling invariant

'worst' locus is locus of maximal value of the controlling invariant

Requirements for the controlling invariant:

(a) locus of maximal value is Zariski-closed (Zariski upper semicontinuity of the invariant)
(b) locus of maximal value is non-singular and has normal crossing with exceptional divisors
(c) maximal value can not increase under a blowing up
(d) decrease of maximal value is a measure for the improvement of the desingularization
Structure of the controlling invariant

$$(inv_d; inv_{d-1}; \ldots; inv_2)$$
Structure of the controlling invariant

\[(inv_d; inv_{d-1}; \ldots; inv_2)\]

central construction in Hironaka’s argument:
descent of ambient dimension
Structure of the controlling invariant

\((inv_d; inv_{d-1}; \ldots; inv_2)\)

central construction in Hironaka’s argument:
descent of ambient dimension

Basic idea using \(ord_\partial(f)\) as \(inv_d\):
Consider

\[f = z^k + a_1(x)z^{k-1} + \cdots + a_k(x) \subset \mathbb{C}\{z, x\} \]
Structure of the controlling invariant

\[(inv_d; inv_{d-1}; \ldots; inv_2)\]

central construction in Hironaka’s argument:
descent of ambient dimension

Basic idea using \(ord_0(f)\) as \(inv_d\):
Consider

\[f = z^k + a_1(x)z^{k-1} + \cdots + a_k(x) \subset \mathbb{C}\{z, x\}\]

We know: \(ord_0(f) = k \iff ord_0(a_i) \geq i \ \forall 1 \leq i \leq k\)
Structure of the controlling invariant

\[(\text{inv}_d; \text{inv}_{d-1}; \ldots; \text{inv}_2)\]

central construction in Hironaka’s argument:
descent of ambient dimension

Basic idea using \(\text{ord}_0(f)\) as \(\text{inv}_d\):
Consider

\[f = z^k + a_1(x)z^{k-1} + \cdots + a_k(x) \subset \mathbb{C}\{z, x\}\]

We know: \(\text{ord}_0(f) = k \iff \text{ord}_0(a_i) \geq i \quad \forall 1 \leq i \leq k\)

hence: \(\text{ord}_0(f) = k \iff \text{ord}_0(\langle a_1^{k!}, a_2^2, \ldots a_k^{(k-1)!} \rangle) \geq k!\)
Main Problems of Desingularization

in characteristic zero:

- for singular loci of higher dimension
 point blow ups do not suffice
- singular locus has structure (e.g. singularities)
- unsuitable choice of centers can deteriorate the situation
Main Problems of Desingularization

in characteristic zero:
- for singular loci of higher dimension
 point blow ups do not suffice
- singular locus has structure (e.g. singularities)
- unsuitable choice of centers can deteriorate the situation
- extremely high amount of data due to
 up to n new charts per blowing up
- Glueing of different charts
Main Problems of Desingularization

in characteristic zero:
• for singular loci of higher dimension
 point blow ups do not suffice
• singular locus has structure (e.g. singularities)
• unsuitable choice of centers can deteriorate the situation
• extremely high amount of data due to
 up to n new charts per blowing up
• Glueing of different charts

in positive characteristic:
• hypersurfaces of maximal contact need not exist
• order of an ideal may increase under blowing up